Fatigue Monitoring and Life Extension for Top Production Riser Systems

Bulent Mercan, Mike Campbell – 2H, Clay Thompson – Occidental Petroleum

OTC
August 2021
OTC-31259-MS

Fatigue Monitoring and Life Extension for Top Tensioned Production Riser Systems

Bulent Mercan, 2H Offshore Inc.
Mike Campbell, 2H Offshore Inc.
Clay Thompson, Occidental Petroleum Corporation

Learn more at www.2hoffshore.com
AGENDA

- Introduction
- Riser and Monitoring Systems
- Field Data Screening
- Impact of Top Tension
- Riser Fatigue based on Monitoring Data
- Conclusions and Recommendations

Learn more at www.2hoffshore.com
INTRODUCTION

Challenges:
- Many TTRs installed worldwide more than 20 years ago are now reaching their design lives.
- The fitness-for-service assessment may require costly out-of-service inspections.

Potential Solutions for TTR Life Extension
- Conduct a risk-based assessment (developed as part of the TRACS JIP and discussed in a partner paper, Deka et al. 2021, OTC-31060-MS)
- Deploy a fatigue monitoring system to assure the long-term integrity (this paper)

Objectives of this work:
- To discuss the value of TTR field measurements and data analytics
- To show the impact of top tension on the TTR fatigue response using monitoring data

Learn more at www.2hoffshore.com
A total of 6 TTRs are deployed from a spar operating in a water depth of approximately 5,000 ft.

Two of these TTRs are instrumented for this study.

TTR is a dual casing system consisting of a 12-3/4-inch outer casing and 9-5/8-inch inner casing.

The riser is tensioned using the upthrust provided by the buoyancy can and stem system.
RISER MONITORING SYSTEM

- Monitored two risers simultaneously for varying top tensions
- Installed 6 motion sensors on each riser
- Two monitoring campaigns are conducted for a total period of 18 days (2 days +16 days)
- The risers are filled with treated seawater
- Top tensions:
 - TTR1: 440 kips – 835 kips
 - TTR2: 545 kips – 675 kips

<table>
<thead>
<tr>
<th>Sensor Location</th>
<th>Water Depth (ft)</th>
<th>TTR-1</th>
<th>TTR-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below Stem Pipe</td>
<td>545</td>
<td>517</td>
<td></td>
</tr>
<tr>
<td>450 ft Above Stress Joint</td>
<td>4,513</td>
<td>4,516</td>
<td></td>
</tr>
<tr>
<td>300 ft Above Stress Joint</td>
<td>4,663</td>
<td>4,669</td>
<td></td>
</tr>
<tr>
<td>150 ft Above Stress Joint</td>
<td>4,813</td>
<td>4,817</td>
<td></td>
</tr>
<tr>
<td>Bottom of Stress Joint</td>
<td>4,963</td>
<td>4,965</td>
<td></td>
</tr>
<tr>
<td>Wellhead</td>
<td>4,979</td>
<td>4,978</td>
<td></td>
</tr>
</tbody>
</table>
MOTION SENSORS

- Standalone (battery-operated) sensors
- Magnetically attached by ROV
- Each sensor records data continuously
- Logging at 10 Hz frequency
- Measure 3D accelerations and 2D angular rates

Learn more at www.2hoffshore.com
DATA SCREENING

- Perform sensor validation
- Calculate the RMS accelerations for all sensors
- Correlate the RMS accelerations with the field operations and environment
- Conduct spectral analysis for each event
- Identify VIV and wave dominant events

Learn more at www.2hoffshore.com
RISER ACCELERATION STATISTICS

- Both risers show comparable motions below the stem pipe
- Accelerations near the bottom are higher than those below the stem pipe
- Wellhead and bottom stress joint accelerations are negligible

Learn more at www.2hoffshore.com

OTC-31259-MS • Fatigue Monitoring and Life Extension for Top Tensioned Production Riser Systems • Bulent Mercan
• Riser motions are in a good agreement with wave height measurements
• Measured riser response is dominated by wave induced effects
RISER RESPONSE IDENTIFICATION

Acceleration Spectra Indicating Riser VIV response

Learn more at www.2hoffshore.com

OTC-31259-MS • Fatigue Monitoring and Life Extension for Top Tensioned Production Riser Systems • Bulent Mercan
TTR-1 accelerations near the bottom reduce by around a factor of 2 when the top tension increases from 440 kips to 835 kips.

For the same wave height, higher tension setting results in less scattered measured riser motions.

Learn more at www.2hoffshore.com
RISER FATIGUE METHODOLOGY

• Derive transfer functions in frequency domain by performing dynamic analysis for different seastates or modes;

• Relate measured riser accelerations at a sensor location with bending moments along the riser using transfer functions;

• Derive fatigue damage using bending moment PSD and fatigue details (e.g. SN curves and SCF values);

• Suitable for the cases in which the riser is subjected to both wave and VIV effects.

Learn more at www.2hoffshore.com
FATIGUE METHODOLOGY

Bending moment PSD is used to calculate bending moment histogram by means of Dirlik’s method

\[G = \frac{(\Delta t)^2}{T} \left| \sum_{i=1}^{n} e^{-i\omega n} \right|^2 \]

\[M_n = \sum_{k=1}^{m} f_k^n G_k(f_k) \partial f \]

\[P(S) = \frac{D_1 e^{-\frac{Z}{Q}} + D_2 Z e^{-\frac{Z^2}{2R^2}} + D_3 Z e^{-\frac{Z^2}{2}}}{2(M_0)^2} \]

- \(G \) the power spectral density
- \(T \) the time
- \(\Delta t \) the time step of the logger (1/f)
- \(n \) the number of data points
- \(\omega \) the angular frequency
- \(M_n \) the \(n \)th spectral moment
- \(f \) the frequency
- \(m \) the number of frequency points

Learn more at www.2hoffshore.com
Higher fatigue damage rates occur largely for the low tension periods.

For TTR-1, the fatigue damage rate reduces by a factor of approximately 10,000 after tension increase.

For TTR-2, changing top tension from 545 kips to 675 kips results in a reduction on fatigue damage rates by a factor of 10 on average.
CONCLUSIONS AND RECOMMENDATIONS

• Most of the TTRs are currently reaching their design lives and there is limited industry guidance addressing their life-extension programs.

• Riser monitoring can provide assurance for the system performance and integrity in service.

• Monitoring data considered in this study show that TTR fatigue can be highly sensitive to top tension provided by the air can during the service life of the riser.

• It is recommended to track the in-service operating tension of the risers as it is a key input for any life extension assessments.

Learn more at www.2hoffshore.com
Acknowledgements / Thank You / Questions

The authors would like to acknowledge Occidental Petroleum Corporation for permission to publish this paper.